
Preprint

D
E

PA

RTMENT OF THE NAV
Y

N
AVA

L RESEARCH LABORATO
R

Y
A Data Pump for Communication

Myong H. Kang and Ira S. Moskowitz

FROM:

Submitted for publication 1994/1995.

CONTACT:

Myong H. Kang, Information Technology Division, Center for High Assurance Computer Systems,

Mail Code 5542, Naval Research Laboratory, Washington, DC 20375.

Ira S. Moskowitz, Information Technology Division, Center for High Assurance Computer Systems,

Mail Code 5543, Naval Research Laboratory, Washington, DC 20375.

E-MAIL:

mkang@itd.nrl.navy.mil

moskowit@itd.nrl.navy.mil

COMMENTS:(version | May, 16 1994)

Corrected typos in some references

A Data Pump for Communication
�

Myong H. Kang and Ira S. Moskowitz

Information Technology Division | CHACS: Code 5540

NAVAL RESEARCH LABORATORY

Washington, D.C. 20375

Abstract

As computer systems become more open and interconnected, the need for reliable and

secure communication also increases. In this paper, we introduce a communication device,

the Pump, that balances the requirements of reliability and security. The Pump provides

acknowledgements (ACKs) to the message source to insure reliability. These ACKs are also

used to regulate the source to prevent the Pump's bu�er from becoming/staying full. This is

desirable because once the bu�er is �lled there exists a huge covert communication channel.

The Pump controls the input rate from the source by attempting to slave the input rate to

the service rate through the randomized ACK back to the source.

An analysis of the covert channel is also presented. The purpose of the covert channel

analysis is to provide guidelines for the designer of the Pump to choose appropriate design

parameters (e.g., size of bu�er) dependent upon the analysis presented in this paper and

system requirements.

1 Motivation

Sharing information between users/processes, or, more simply put, entities, is undeniably the

wave of the future. This will be true, regardless of whether this sharing is centralized on one

computer or, at the other extreme, distributed over the information highway. As computer

systems become more open and distributed, the security concerns relating to information

exchange between di�erent entities will grow.

Two security concerns are paramount:

�Parts of this paper have previously appeared in \A Pump for Rapid, Reliable, Secure Communication", 1st

ACM Conference on Computer & Communications Security '93-11/93, pages 119-129, ACM Press.

1

2

1. There should be no intrusion of unauthorized entities. Research on access control, virus

detection and prevention, etc. focus on this aspect of security.

2. No information should
ow to unauthorized entities in the computer systems.

In this paper, we are looking at the second concern|security means no unauthorized

information
ows. We assume all entities are authorized to be in/on the system; however

these entities may still act in a malicious manner. We do not want to have certain entities

know what is in certain �les, i.e., we do not want these entities to be able to read these �les

and we do not want entities that are authorized to read these �les to send any data to the

unauthorized entities. What we are discussing is a multilevel secure system where di�erent

entities have di�erent sensitivity levels that form a lattice [1, 2]. The prohibitions against

\reading up" and \writing down" described above are the Bell-LaPadula requirements (BLP)

[3, 2]. In an information theoretic sense this is equivalent to requiring that information only

ow from a lower level entity (Low) to a higher level entity (High).

At �rst glance, there seems to be no problem meeting the BLP requirements. Simply design

a system so that information only
ows up, not down. Let us examine a conventional (non-

secure) approach to sending information from one entity to another and see what problems

occur. Throughout this paper, we assume that there is only one source entity and only one

destination entity. An application of the Pump in secure networks, using the foundations

developed here, is dealt with in a separate paper[4].

2 The Store and Forward Protocol|SAFP

A conventional communication protocol used in (non-secure) systems should include the fol-

lowing characteristics:

1. Reliability: The communication is reliable if there is no loss of messages and no duplica-

tion of messages.

2. Good Performance.

A standard conventional protocol is the SAFP.

ACK/NAKACK/NAK

receivesend

Source Entity

Message
Concentrator

Store-
and-

forward
buffer

Destination Entity

Figure 1: Message passing from source entity to destination entity under the SAFP.

3

Figure 1 shows a typical example of the SAFP. If the message-passing occurs in a dis-

tributed environment, then the source and destination entities may reside in two di�erent

computers and the message concentrator itself may be yet another computer; if the message-

passing occurs in a single computer, then the operating system may play the role of the

message concentrator (e.g., pipes in a UNIX system).

A typical message-passing scenario, in the SAFP, between the source entity (message

concentrator) and the message concentrator (destination entity) goes as follows:

1. Establish transmission/connection.

2. Send a message.

� If the source entity (message concentrator) receives an ACK, then discard the mes-

sage from the source entity's memory (message concentrator's bu�er).

� If the source entity (message concentrator) either receives a NAK or times out, then

retransmit the message.

3. If there are more messages to send, then go to step (2).

4. Signo�/Disconnection.

Note that step 2 above guarantees reliability because if a NAK is sent or if the message is timed

out, then the source entity retransmits. Also, the ACKs allow the source entity to perform

garbage collection. By this we mean that the source entity can reclaim memory (bu�er space)

and reuse it later. If a non-volatile bu�er is used, the above communication is recoverable

from system (except media) failure. We assume that message identi�cation numbers are used

so that duplicate messages can be easily handled.

If the source entity sends messages faster than the destination entity can receive them

(either due to slow processing or failure in reception), then the bu�er in the message concen-

trator may be �lled. The source entity then will be unable to send any more messages until the

destination empties some messages from the message concentrator. In this case, we say that

the source has been blocked. However, if the source has a slower rate than the destination,

determining the size of bu�er that keeps the message blocking probability within speci�ed

design limits has been widely studied [5, 6], and closed form, solutions have been obtained

provided we assume a M/M/1 queue.

In a secure environment, if Low is the source entity and sends messages to High (destination

entity), then the same protocol cannot be used. Since the time at which Low receives the

ACK/NAK may be under the control of High the ACK/NAK arrival times can be used to

send information from High to Low (we discuss this fully in section 3.2.). If we do away with

the ACK/NAK protocol, we can insure security but at the price of unacceptable degradation

of reliability, recoverability, and/or performance | these are the problems with the read-down

and blind write-up protocols (which do not violate BLP) that we will discuss next. Therefore,

we modify the SAFP to allow Low to pass messages to High in a secure manner. For the rest

of this paper Low will be the source entity and High will be the destination entity.

4

2.1 Read-Down Protocol

Read-down allows High to read Low's memory. But it does not allow High to send acknowl-

edgements after it reads Low's message; hence, this protocol is secure. Consider the following

implementation of a mechanism that passes information from Low to High using only read-

down. Low inserts its message into a low level message bu�er (in �gure 2 the dashed line

separates security levels). High reads the message, but Low has no indication that the mes-

sage has been read. The message sits unchanged in the bu�er until Low deletes it.

message

High

Low

read-down

Message Buffer

ACK/NAK

Figure 2: Message passing from Low to High using read-down.

Assuming that no error has occurred in the read-down procedure, two ways to achieve this

communication are:

� High continuously polls the low bu�er. However, this method wastes resources (e.g.,

CPU time)|hence, a performance penalty.

� High periodically performs a read-down (e.g., every � time). In this case, Low cannot

send more than one message per � time units. Otherwise, (unless there is an in�nite

bu�er) Low may delete messages which have not been read by High. If � is too small,

then, like the polling method, this method will waste resources. If � is too large, then

the message rate will be reduced (i.e., the message rate of this communication is less

than or equal to 1
�
messages=unit time). Hence, a performance penalty.

Another drawback of this method is that Low cannot detect if High is ready to receive messages

or not. For example, if High crashes, there is no way for Low to detect the situation and stop

sending messages (otherwise Low may delete messages that High has not read yet).

5

2.2 Blind Write-Up Protocol

Blind write-up allows Low to write on High's memory. But it does not allow High to send an

ACK/NAK to Low. We could implement a blind write-up mechanism as follows in �gure 3.

Low

High

ACK/NAK message

Message Buffer

blind write-up

Figure 3: Message passing from Low to High using blind write-up.

Low writes its message into the high level message bu�er and High reads messages from the

bu�er. Low does not know whether or not the message bu�er has space available (since this

message bu�er is at higher level than Low), so it must send a message and hope that High

receives it. Hence, this mechanism is unreliable because even if an error occurred during

transmission, there is no way for Low to discover it and retransmit the message. Also, Low

might write over messages before High has read them.

3 A Quasi-Secure Low-to-High Communication Pro-

tocol

The communication mechanisms presented in the previous section all have undesirable char-

acteristics. The read-down and blind write-up methods are unreliable because there is no way

of knowing if the intended receiver actually received the message. Hence, even though these

mechanisms may be secure, they are not a good substitute for the conventional protocol. We

believe that there is no way to obtain a realistic system with realistic performance requirements

without sacri�cing some security. Therefore, we seek to design a system with quasi-security

that still satis�es the performance and reliability requirements. In other words, we will tol-

erate a system that allows some insecurity below a certain level provided that the rest of the

requirements are satis�ed. To quantify that level, we must discuss covert channels. Classically,

6

a covert channel has been de�ned as a communication channel from High to Low that exists

contrary to a secure system design [7]. Since covert channels seem to be a fact of life, we

adopt the more lenient view and just say that in a MLS system any communication channel

from High to Low is a covert channel. We say that the system is quasi-secure if the potential

damage of a covert channel is kept within tolerable bounds. Capacity (in the information

theoretic sense of Shannon [8]) of the covert channel is a good measure of insecurity if we

are concerned with the leakage of a large amount of data in a large amount of time. If our

concern is with a small message being passed covertly, possibly in a very noisy environment,

then we need another metric aside from capacity (this is discussed fully in the section on the

Small Message Criterion in [9]). Hence quasi-security must take the small message criterion

into account also. In this paper, we can think of the small message criterion as a bound for

how many bits can be passed (possibly noiselessly) in a small amount of time.

There are two basic types of covert channels [10]; the storage channel (di�erent responses,

same time) and the timing channel. A covert channel is called a timing channel if the output

alphabet consists of the same response given at di�erent times. Our security concern with the

conventional communication protocol is that of High forcing Low ACKs to arrive at di�erent

times and thus creating a timing channel.

The Pump, introduced in this section, is a variation of the conventional communication

protocol that was introduced in section 2. We already mentioned that the conventional com-

munication protocol has a covert channel. One way to circumvent this timing channel problem

is to limit the ACK/NAK sending rate to meet the NCSC covert channel capacity guidelines

[11] for B3/A1 systems. However, if it is desirable to send more messages (or ACK/NAK) than

what the NCSC guideline speci�es, and the communication channel can handle this tra�c,

then this limitation severely penalizes the performance of the communication system.

The Pump adds random noise to conventional communication methods to reduce the covert

channel capacity. There have been other attempts to reduce channel capacity by introducing

random noise to the system [12, 13, 14, 9]. Our approach is di�erent in the sense that ours

pays almost no performance penalty in the benign situation (i.e., there is no Trojan horse

in the system). When Trojan horses attempt covert communication our approach reduces

potential timing channel capacity. Before describing the Pump in detail, we �rst examine the

timing channel that exists in the conventional communication protocol.

3.1 The Full Bu�er Channel

We are looking at a secure system where, as stated before, the source entity is Low and

the destination entity is High. Below, as before, is the conventional communication protocol

illustrated for such a secure system.

7

ACK/NAKACK/NAK

receivesend

Low

Message
Concentrator

Store-
and-

forward
buffer

High

Figure 4: Conventional message passing from Low to High.

High cannot directly communicate with Low. However, Low must receive an ACK before

it sends its next message to the (store and forward) bu�er. High, by not sending ACKs to the

bu�er, can cause the bu�er to become full. As long as the bu�er is not full Low receives the

ACK after a wait of overhead communication time Ov (For the sake of simplicity we assume

that the Low and High ACK overheads are the same. If the overheads di�er our formulas

in section 3 can be easily modi�ed). Once the bu�er becomes full, High can send an ACK

to the bu�er, a message is removed from the bu�er, a space is open on the bu�er, and Low

will receive an ACK. The time at which this ACK arrives at Low is under the direct control

of High. Note that when Low receives its ACK, the bu�er becomes full again and High can

repeat the game. Thus we see that there is a covert timing channel between High and Low

which we refer to as the full bu�er channel (FBC).

3.1.1 Trojan horse Exploitation of the FBC

A Trojan horse (malicious software in both Low and High) can exploit the present situation

and create a covert timing channel. The Trojan horse controls when Low sends a message and

controls when High sends an ACK back to the message concentrator.

� The Trojan horse �lls the bu�er by not removing messages from the SAFB. Now that

the bu�er is full, a noiseless covert timing channel exists between Low and High. Fur-

thermore, this noiseless channel exists as long as the bu�er is full.

� Now Low sends a message to the SAFB. The SAFB cannot send an ACK back to Low

until a spot opens up on the bu�er. If High removes a message as soon as (or before)

Low sends a message than Low only waits the overhead time Ov for an ACK. We assume

that High, by removing messages from a full bu�er, can a�ect the ACK time to Low in

increments of i�; i = 0; 1; 2; : : :. Since the high Trojan horse knows the size of the bu�er

(i.e., n) and how fast the low Trojan horse can send a message, High knows that Low

has �lled the bu�er and has just sent a new message to the bu�er. If Low gets an ACK

at time Ov + i�, Low interprets the signal as the (i+ 1)st symbol. Since every time Low

receives an ACK, the bu�er is full again, and Low can then attempt to insert its new

message | High can noiselessly send symbols again.

8

With this example we are looking at a worst case scenario. High will try to send symbols

as quickly as possible, hence the time values of Ov + i�. Of course this allows unbounded

response times. Real systems have timeouts and we assume that the timeouts in question are

very large in comparison to Ov � �, so that by examining a channel with i bounded, changes

the capacity very little from assuming that i is unbounded. The time units of our system

are such that � is an integer, i.e., � is an integer number of system clock ticks. The channel

capacity [8] of this channel is given by

C = lim sup
k!1

logN(k)

k
bits per clock tick

where the logarithms are base two and N(k) is the number of distinct sequences of symbols

(ACK times) that take a total of time k. It can be shown [15, 16] that C = log !, where !

is the positive root of 1 � (x�Ov + x��). The polynomial arises from the recurrence relation

N(k) = N(k �Ov) +N(k � (Ov + �)) +N(k� (Ov + 2�)) + � � � .

De�ne q by Ov
�
= q. Note that q need not be an integer. By changing variables and letting

y = x� we see that !� is the positive root of 1 � (y�q + y�1). Unfortunately, the only closed

form solution for such polynomials [15] involve special functions. We will give the following

�gure to illustrate the various capacities. (Note for certain special cases such as q = 1 we can

obtain the trivial closed form solution that C = 1=� bits per clock tick. Similarly for q = 2,

we have C = ��1 log 1+
p
5

2
.)

Below is a plot of �C, as a function of q

9

0 20 40 60 80 100

q

0.2

0.4

0.6

0.8

1

e
p
s
i
l
o
n

t
i
m
e
s

C
a
p
a
c
i
t
y

Figure 4.a: �C of the FBC.

No matter how large the bu�er may be, the important fact is that eventually the bu�er

will �ll up. (The Pump does not allow the full bu�er channel to exist because the Pump keeps

the bu�er from being/remaining full.)

3.1.2 The FBC and relative Low/High speeds

We need to consider the relative speeds or rates of the Low and High processes. The rates are

the inverse of the mean time for arrival or service. The rate that Low can send messages to the

bu�er, provided the bu�er is not full, will be called the arrival rate and the rate at which High

ACKs messages from the bu�er will be called the service rate. The actual arrivals, service

times, ACK times, etc. are often governed by probabilistic distributions. If the arrival rate is

slower than, or equal to, the service rate then the bu�er will not stay full and we do not have

the FBC (the bu�er can temporarily become full through bursty Low behaviour). However,

10

if the arrival rate is faster than the service rate, or if a Trojan horse is present to slow High

down, (thus Low would then be faster) the bu�er can stay full. Therefore, to prevent the

FBC we need to slow the arrival rate down. We can accomplish this by slowing the Low ACK

rate (Rl) down. Since Low cannot send a new message until it has an ACK from its previous

message, we see that the slowing of Rl rate also slows the arrival rate (i.e., back-pressure).

Of course we can slow Rl down as much as we like but for security purposes we need only

slow Rl down to match the service rate. Any reduction past this point degrades performance.

Note that service rate is the same as the High ACK rate (Rh), whereas the arrival rate is

quite di�erent from Rl. These distinctions are quite important when we discuss the queuing

theoretic simulations.

l
(R)

Low High

arrival rate

as soon as possible

as quickly as
possible

SAFB

ACK

send

(R)h
ACK

Figure 5: Rates associated with the conventional communication protocol.

What the Pump does is to slow the arrival rate down to match Rh if the arrival rate starts

out faster than the service rate. The Pump lowers Rl, thus lowering the arrival rate, by basing

Rl on a moving average of past High ACK times. If the arrival rate is slower than Rh the

Pump basically leaves the arrival rate unchanged.

3.2 The Pump|A Quasi-Secure Communication Protocol

This process can be used as a communication mediator between any two security levels. Even

though the Pump can reside in either the low or high level, in this paper we assume that the

Pump resides in the security level of the destination entity and hence is of a high level. The

Pump needs to be \trusted" in the sense that the system designer has an assurance that the

Pump will do only what it is supposed to do (i.e., the Pump sends to Low only ACK/NAK

and does not repeat High's message). In a sense, the Pump is blocking any message
ow from

High to Low.

In our model of communication between Low and High, the location (i.e., either in the

same computer or in two separate computers) of these two processes is not important.

The Pump has three basic components which work in conjunction with (Pump indepen-

dent) Low and High to allow data to be passed from Low to High. In actuality, there is a

subtle violation of Bell-LaPadula which allows covert channels, of small capacity, to exist.

11

This is why we call the Pump quasi-secure. The \trust" insures that there are no further

Bell-LaPadula violations. We will examine this later in the paper.

The components are the the trusted low process (TLP), the trusted high process (THP),

and a communication bu�er (CB). The Pump works as follows:

Low

High

The Pump

buffer
Communication

process

process

ACK/NAK

ACK/NAK

messages

messages

Low
Trusted

High
Trusted

Figure 6: Message passing from Low to High using the Pump.

Low: (Exterior to the Pump)

Low sends a message to the TLP and waits for an ACK from the TLP. Once an ACK

arrives, then the message is removed from Low (i.e., does the garbage collection from

Low's internal queue) and a new message is sent (i.e., if Low receives NAK or no response

due to a time-out then it will retransmit the same message). Note that Low may prepare

a new message while Low waits for an ACK/NAK1.

Trusted low process:

When a message arrives from Low, the TLP inserts the message in the CB and then

sends an ACK, after a certain probabilistic delay based on a moving average of the past

m High ACK times2, to Low if the insertion is successful (i.e., there is space in the CB).

As stated we con�gure the Pump as a high process to allow communication between

the Pump and High. However, as discussed, the sending of ACKs to Low violates the

Bell-LaPadula constraints. A Trojan horse can exploit this procedure. If the message

arrives while the CB is empty, then the TLP will send the signal, wake-up, to the THP.

High: (Exterior to the Pump)

When High receives a message from the THP, it stores the message and then sends an

ACK/NAK to the THP.

1Note that sliding window based schemes exist that can send w messages without receiving any ACK/NAK. For

simplicity, we assume w = 1 throughout the discussion in this paper.
2The choice of the delay is the key to a successful implementation of the Pump, see section 3.4.

12

Trusted high process:

Upon receiving the wake-up signal from the TLP, it repeats the following while there is

a message in the CB:

1. Send the �rst message in the CB to High.

2. Once an ACK arrives from High, remove the message from the CB and compute

the moving average. If the THP receives NAK or no response (i.e., time-out) then

retransmit the same message.

Since the Pump is con�gured as a high process, this communication between the THP

and the high process does not violate the Bell-LaPadula constraints.

Communication Bu�er:

This is a regular FIFO bu�er whose length is n, which the TLP and the THP share. The

TLP and the THP may also learn certain statistical information from the CB (e.g., how

many messages are pending in the bu�er, etc.).

We will use the notation P (G;m; n) to signify a Pump with a communication bu�er of size

n, designed with a delay given by the random variable G based on a moving average of the

last m High ACK times. In section 3.4 we use a modi�ed exponential random variable and

this speci�c Pump is denoted by P (M;m; n), where we use M to represent the exponential

(memoryless) random variable.

It is easy to see that any process that communicates with the Pump can collect garbage

because this process receives ACKs. Also, any communication with the Pump is reliable due to

ACK/NAK being sent. If the sender receives either NAK or is timed out, then it will retransmit

the same message. This communication method is also recoverable if we implement the CB

in non-volatile storage and each message has an associated message number. We consider the

following four cases:

case 1: The system crashes after Low sends a message to the Pump but before the Pump

receives it. Since Low never receives an ACK, it will resend the message as the system

recovers.

case 2: The system crashes after the Pump receives a message but before Low receives an

ACK. Since Low never receives an ACK, it will resend the message as the system recovers.

However, the Pump will notice that the message has already been received because of

the message number. Hence, it will just send an ACK and ignore the message.

case 3: The system crashes after the Pump sends a message but before High receives it. This

is similar to case 1.

case 4: The system crashes after High receives a message but before the Pump receives an

ACK. This is similar to case 2.

Note that there may be many destination entities and many source entities that use the

same Pump. However, in this paper, we just consider the case of one source entity and one

13

destination entity which will have the worst case covert channel capacity (less noise, see [4] for

the application of the Pump in networks where many Lows send messages to many di�erent

Highs). We have been denoting these two processes of interest as simply High and Low.

Further, when we perform channel capacity analysis we assume that there are no NAKs to

Low. This makes the analysis easier but does not a�ect the capacity bounds.

3.3 Performance/Security goals of the Pump

The random variable that delays the Low ACK is chosen so that Rl is roughly equal to Rh.

Note that if the arrival rate is slower than Rh, slowing Rl down to the Rh does not a�ect

throughput because Rl is still faster than the arrival rate. We discussed the security reasons

for this in subsection 3.3.1 and we will discuss an actual realization of the random variable in

section 3.4.

l
(R)

(R)h

Low High

arrival rate
as quickly as

possible

CB

TLP THP

the history of

High responses

depending on
ACK ACK

send

Figure 7: Rates associated with the Pump.

At �rst glance it seems that slowing Low down will adversely a�ect the performance of

our communication throughput. In section 5, we show that for the P (M;m; n), discussed in

section 3.4, that this is not the case when we compare performance of the Pump to that of

the conventional communication protocol through simulations.

3.3.1 Low ACK rate = High ACK rate

We guarantee that Rl is roughly equal to Rh via the moving average construction in the TLP.

Let Li be the random variable that represents the time it takes for Low to receive an ACK

from its ith message sent into the CB. Let Hmi
be the average of the last m High ACK times

that have occurred up to and including the time that the CB receives the ith message from

Low.

14

stored in
i-th message

the Pump

Last m High ACKs

...
L i

Low sends

i-th message

time that elapsed from when Low
sent i-th

an ACK

 message to when Low receives

Figure 8: Moving average construction.

A necessary requirement is that the mean of Li, denoted as �(Li) be equal to Hmi
. Even

though the Li are not independent (or identical to each other) we take a \strong law of large

numbers" approach toward looking at Rl. Note that Rl is the inverse of the average of the

actual values of the Li. This numerical average should behave as the average of the �(Li) but

this, by de�nition, is equal to the average of the High moving averages the Hmi
and this is

approximately equal to the average of the High ACK times (provided that the total number

of messages acknowledged by High, denoted by N , satis�es N >> m) which is simply 1=Rh.

Thus,
1

Rl
=

1

N

X
Li �

1

N

X
�(Li) =

1

N

X
Hmi

�
1

Rh
:

Hence Rl � Rh. Note it is not our goal to show that the Pump achieves Rl � Rh; rather it

is our goal to show that the Pump has a built-in mechanism that does not allow the CB to

become full too often and, when it is full, that substantial information is not passed to Low.

Therefore, we use the above mathematics to give justi�cation to our choices for the random

variables de�ning the Low ACK time. Our analysis of covert channel exploitations in section

4 shows that Low cannot glean signi�cant information if and when the CB becomes full.

3.3.2 Throughput

Since the Pump is a one-way communication device rather than a two-way communication

device (that can be used in an interactive mode), the throughput is a good measure of perfor-

mance. The throughput is the number of messages sent from Low to High, that are acknowl-

edged to the bu�er by High, per unit time.

When studying performance, we are considering only the benign case. When a Trojan

horse is acting maliciously, performance is no longer our �rst priority. One of the advantages

of the Pump is that its performance to security ratio is dynamic. By this we mean that in

the benign case the performance takes a very small hit; however, in the Trojan horse case the

capacity of any potential covert channels is greatly diminished and that the Pump responds

automatically to the changing situations.

15

To ensure good performance/security we believe that the bu�er should not be allowed to

become and/or stay full. We have already discussed the security problems relating to a full

bu�er. The performance reasons are that, if Low is sending messages faster than High can

handle them, then High becomes a bottleneck and the throughput is thus limited by the High

rate.

However, the construction of the Pump has the ACK times to Low governed by a random

variable by de�nition.

1. If High is faster than Low then the random variable should not a�ect Low's rate because

Rl is faster than Low's rate.

2. If Low is faster than High, then the random variable should slow Low's rate down. This

is the reason for the moving average construction in the Low ACK time. In terms of

performance the best that we can hope for is Low's rate to be equal to High's rate. If

Low and High rates are roughly equal then performance and security are good. If Low

is allowed to become slower than High then we are wasting resources since High waits in

an idle mode for Low to send messages.

3. If Low and High rates are equal then we are all right since the probability of the bu�er

becoming and staying full are small (burstiness may occur).

4. A fourth case arises if the source of delays is the Pump itself (i.e., the overhead). In this

case the bu�er can become full but it is not under the control of High. Even though this

is acceptable for security it is not good for performance and a faster Pump should be

used. We will not consider this case further.

3.4 Choice of a random variable | the P (M;m;n)

The density function of the random variable for Low ACK times that will be chosen should

have the following two properties:

1. The mean of this random variable should be controllable. The density function should

be sensitive to system feedback, in order to meet the performance/security requirement.

2. There should be no upper bound. If the support of the density function has an upper

bound, then the upper bound can be exploited by Trojan horses. For example, if the

uniform distribution is chosen with support [Ov; B] the mean must be Hmi
for the per-

formance reasons discussed. This forces B = 2Hmi
�Ov . Hence, if the high Trojan horse

decides to send a signal by keeping the CB full for a time greater than B, then the signal

is delivered without any noise. Aside from capacity concerns this allows small messages

to be passed, with high con�dence, in a small amount of time.

Even though there are many random variables that satisfy the above properties we have

chosen the exponential distribution because the capacity of the covert channel is relatively

easy to analyze (due to the relatively simple density function).

16

We will now describe in detail an implementation of the Pump using a modi�ed exponential

distribution for the delay in the ACKs to Low. This is the P (M;m; n). As before, we let Ov

be the communication overhead for the Pump. By this we mean that Ov is the minimum

value for any Li. Si is the value for what Li would be if this were just the SAFP. The smallest

Si can be is Ov (which is always the case if the bu�er is not full). The largest Si can be is � ,

where � is a time out which is taken to be much larger than Ov . The ith response to Low,

Li, is given by a random variable that has the density function fi(t). There are three cases to

discuss.

Case 1: Si = Ov and Si < Hmi

This is always the situation when the CB is not full.

fi(t) =

(
�ie

��i(t�Si); if Ov � t < �;

0; otherwise:

This is just an exponential distribution that starts at Si instead of time 0. Unfortunately, this

will allow the response time to be in�nite, so we must bound this distribution. We therefore

put a time out in such that if Low has not received an ACK by time � , it interprets that as a

NAK. We should then adjust the density function by a multiplicative constant. However, � is

chosen so much larger than Ov, which is the present Si value, that this constant is essentially

unity and we therefore ignore the constant.

The mean of the above density function is Si + 1=�i. Since we wish for this mean to be

equal to the moving average of the last m High ACK times we see that �i =
1

Hm
i
�Si .

Case 2: Si > Ov and Si < Hmi

As above �i =
1

Hm
i
�Si . The timeout � is much greater than Ov, but there is no guarantee that

it is much larger than a generic Si value. Therefore if Si is much larger than Ov we can no

longer assume that the tail of the modi�ed exponential distribution is negligible. Therefore,

we cannot ignore the above mentioned multiplicative constant and we must modify what we

did in case 1. However, the spirit is still the same.

Step 1: Set �i = � � 1=�i. We still use an exponential distribution between Si and �i,

however, we \absorb" all of the probability (assuming exponential behavior) from �i to 1

into time � . To be precise, consider the following pdf:

gi(t) =�[Si;�i]
(t)�ie

��i(t�Si) + e��i(�i�Si)�(t� �)

Note, since �i � Si = � � Hmi
� 0 and �(t) is the Dirac delta function, the above is a

well-de�ned density function. The expectation of this density isZ 1
�1

tgi(t) dt = Si +
1

�i
+ e��i(�i�Si)(� � �i �

1

�i
)

Since �i was set equal to � � 1=�i we see that the expected value is simply Si + 1=�i. We

could stop at this step, however there is now a non-zero probability of Li = � . This could

possibly be used for covert communication so we wish to further increase the ambiguity of Li

while still keeping performance in mind.

17

Step 2: Now we select a uniform random number between Si and �i and call it �0i and

set � 0i = �0i + 1=�i. Consider yet another pdf

g0i(t) =�[Si;�
0

i
](t)�ie

��i(t�Si) + e��i(�
0

i
�Si)�(t� � 0i)

Since this integrates over the reals to one it is a well-de�ned density function. Its expected

value is still Si + 1=�i. So we have negated using � as a signal. Since � 0i is in fact randomly

generated, we feel there is a very small chance that � 0i may be used as a signal. However, we

go one step further to increase the ambiguity of the time signal.

Step 3: We wish to uniformly spread the probability of Li = � 0i out over the interval

between [� 0i; �]. Consider the density function

fi(t) =�[Si;�
0

i
](t)�ie

��i(t�Si) +�[� 0

i
;�](t)

e��i(�
0

i
�Si)

� � � 0i

Now the mean of this is larger than Si + 1=�i. This is acceptable because this helps keep the

CB from remaining full. This does not a�ect performance too much because the percentage

of time that the CB is full is in fact quite small (see section 5).

Case 3: Si � Hmi

This is identical to case one, except we use a small mean for the exponential distribution. For

the best performance the mean should be in�nitesimally small, however for security we bound

it away from zero, otherwise the value of Si can be observed by Low (and possibly be used for

noiseless covert communication).

3.5 Pump algorithm

We give the algorithm for the P (M;m; n) to show how the Pump sets Li.

Note: Si is the time between when Low sends a message and when Low receives an ACK in

the SAFP and � is a small number. We have the following relationships between our terms.

�i = � + Si �Hmi
, �i

0 = �i
0 +Hmi

� Si, �i
00 = �i

0 � Si and a random delay Di = Li � Si.

Message is placed in CB

Read Hmi
;

IF Si � Hmi
THEN � := � ;

ELSE � := Hmi
� Si ;

END IF ;

Draw an exponential random number � whose mean is � ;

IF Si = Ov OR Si � Hmi
THEN

Di := � ;

IF Di > � � Si THEN Di := � � Si ;

END IF ;

ELSE

18

Draw a uniform random number �i
00 between 0 and �i � Si ;

IF � � �i
00 THEN Di := � ;

ELSE

Draw an uniform random number �0 between �i
0 and � ;

Di := �0 - Si ;

END IF ;

END IF ;

4 Covert Channel Analysis

We will now show that it is impossible for a Trojan horse to exploit the Pump in any meaningful

way. Assume that High wishes to signal Low covertly. Let us try to get some quantitative

bounds on the capacity for a P (M;m; n).

High will attempt to signal Low by a�ecting the values of Li. Say High tries the strategy

that we discussed earlier of letting the CB get full and then removing messages within time

Ov + i�. A few factors make this an unfeasible Trojan horse strategy. High cannot get the

CB full and keep it full without imposing a severe time penalty being enacted upon Li. This

is because for the CB to become full, High must be removing messages at a slower rate than

Low is getting ACKs back from the TLP. But after a certain number of messages the slow rate

of High is manifested by forcing Li to also slow down due to the moving average construction

of �(Li). There are three basic problems with this approach.

� The noise that is involved when High tries to send a symbol to Low.

� The time involved in sending the symbol due to large delays by High necessitated by

High trying to send a symbol with as little noise as possible.

� Synchronization problems between High and Low. By this we mean the ability of Low

to di�erentiate, via Li values or the number of messages ACK'ed, between when High is

getting ready to send a message (i.e., letting the CB get full) and when Li is the actual

symbol being passed by High.

Let us consider three possible exploitations below where the last strategy exploits High's

ability to in
uence Hmi
and the �rst two strategies exploit High's ability to make CB full in

addition to in
uence Hmi
.

Exploitation strategy 1:

1. High acts quickly (ACK time = Ov) m times. This has the e�ect of lowering the moving

average and thus speeding up the Li values.

2. Now High does not send an ACK for t = nOv in the hopes of Low �lling the CB. When

Low �nally does receive this delayed Li value it is interpreted as a synchronization signal

19

from High to Low | This means that the next Li value is to be interpreted as a symbol

being sent by High.

3. High sends a symbol through the High ACK time (i.e., via the Si value chosen by High).

Note that due to the probabilistic nature of Li and the fact that the CB may not even be

full, this symbol is quite ambiguous (noisy). Also now Li is large because of the previous

High delay of t = nOv .

High wishes for the CB to become full again so that it can again send a symbol with as little

noise as possible, so High repeats the above process of lowering Li by acting quickly and then

delaying and �nally sending a symbol. We see that if a symbol is sent noiselessly it would take

at least t = (m+ n+ 1)Ov. The next shortest symbol would take (m+n+1)Ov + �, the next

(m+n+1)Ov+2�, etc. We assume (the worst case) that the channel has an in�nite alphabet,

so, like before, the capacity of this timing channel (C0) is the logarithm of the positive root

of 1 � (x�(m+n+1)Ov + x��). Obviously this timing channel has a smaller capacity than the

FBC (we designate the capacity of the FBC by C for this discussion). However, the question

remains as to how much smaller. We de�ne R by

R =
�N

q

log(1� w�1=N)

logw

where w is the positive root of 1 � (w�q + w�1). If m + n + 1 � R, it can be shown that

C0 � 1
N
C. Thus by adjusting m and n we can reduce the capacity by any amount that we

want. Follows a plot of R against the reduction factor 1
N

for various q values.

20

0 10 20 30 40 50

N

0

20

40

60

80

100

120

R

q=25

0 10 20 30 40 50

N

0

20

40

60

80

100

R

q=100

0 10 20 30 40 50

N

0

50

100

150

200

250

300

R

q=1

0 10 20 30 40 50

N

0
25
50
75
100
125
150
175

R

q=5

Figure 8.a: reduction factors.

Exploitation strategy 2:

1. High acts quickly (ACK time = Ov) m times.

2. Now High does not send an ACK for t = nOv .

3. High sends a symbol through High ACK time (i.e., via the Si value chosen by High).

The �rst three steps are the same as those of the strategy 1. The di�erence is instead of

High repeating the process of | �lling the CB, delaying, sending a symbol, and �lling the

CB again | after High sends the �rst symbol, it continues to send symbols. However, if High

ACKs a message quickly (i.e., small Si values) to try to send more symbols per given time to

Low it will, in fact, end up only emptying out the CB and thus will not be able to send Low

di�erent Si values. High does not know when Low sends a message to the Pump; therefore,

High must be careful (if it wishes to keep the CB full) not to ACK a message too quickly from

the THP, because if it ACKs too quickly the CB will no longer be full and High cannot send

symbols by using di�erent Si values. Unless the High ACK times are essentially the timeout

21

� , the probability the CB is full approaches 0 as the number of symbols being sent increase.3

However, the closer the High ACK times are to � , the less High can manipulate the Si values;

therefore, the number of symbols that High can send decreases as the probability of keeping

the CB full increases. With all of this in mind, we feel that this exploitation strategy cannot

have a capacity of more than 1=� bits per tick.

Exploitation strategy 3:

High could attempt to send information to Low by simply a�ecting the moving average and

having Low interpret its response times without High trying to make the CB full. A full

analysis of this scenario is quite complicated and involves channels with continuous outputs.

Also, there are severe practical coding issues when one quantizes the output space into many

symbols. So even though a true capacity upper bound could be obtained, it would be quite

di�cult to build the proper code. From a practical standpoint one could study the capacity

just through �nite decoding schemes (this is not to say that one should not see how the

capacities di�er). We can make some qualitative statements about the channel capacity based

on present techniques. Low's ACK time is a modi�ed exponential distribution with shift

Ov. All that High can do is to alter the mean. Let us look at a simplifying example where

High tries to send a symbol to Low by varying the mean between two values, keeping in

mind that any immediate e�ect High could have on the mean is moderated by the moving

average construction. Say Low receives a response and wants to decide whether it came from

a modi�ed exponential distribution with mean 1 or mean 2. If the means are close then it is

hard to make this decision and the symbol is very noisy. To make the symbol less noisy would

require High to enlarge the di�erence between the means; this, however, would also increase

the time that Low receives the symbol and in fact increase the time that Low receives future

symbols due to the moving average construction of the means. Therefore, we decrease the

noise with which symbols are sent only by penalizing the time cost with which they are sent.

Between the �delity criterion of the symbols forcing a large di�erence between the values of

the means and the fact that the moving average moderates any change of High by a factor

of 1=m, we feel that the capacity of these exploitation scheme is 1=m that of the FBC. We

realize that we have only given an intuitive argument for this 1=m reduction. At present, we

are investigating more precise arguments for this reduction [17].

Certainly one could use a combination of the above exploitation strategies. However, we

do not see any order of magnitude improvement by doing this. In our capacity bounds for all

three exploitations we were tacitly assuming that the Low and High overheads are equal. This

only a�ects exploitation strategy 1. If the overheads di�er, the exponents of the polynomials

di�er, but by adjusting m and n we can still get the desired capacity reduction.

A modi�cation could be done to the P (M;m; n) so that the mean of the exponential

3
P (CB full after sending k symbols) =

Qk

i=1
P (CB full after sending symbol i), since P (CB full after sending

symbol i) is bounded away from 1, provided that the High ACK times are bounded away from � we see that this

product approaches 0, relatively quickly as k increases.

22

distribution was a function of Hmi
. However, if one wishes to reduce the channel capacity

further, � can be chosen not only as a function of Hmi
but also as a function of the current

state of the CB. For example, if the CB is 80% full then �i may be a function of 2Hmi
, if the

CB is 90% full then �i may be a function of 3Hmi
, and so on. This will have the e�ect of

slowing down Li when High tries to send covert signals with very little noise.

5 Simulation Analysis

To substantiate our performance claim, we perform a simulation. First, we describe our input

source, server, Pump and SAFP models. We then show the throughput rates and the pro�le

of the CB.

5.1 Simulation Model

In this section we present a performance comparison of the Pump to the conventional commu-

nication protocol via a simulation model. We make the standard assumptions regarding the

(benign) usage of either protocol|namely, that they are single-server queues with exponential

interarrival times and a service times given by the 2-Erlang distribution. In other words a

M/G/1 queue. Often queues such as these are modeled by the simpler M/M/1 queue. The

M/M/1 queue is more tractable for closed form analysis but the M/G/1 queue is a better

representation of reality [18]. Since our interest lies in simulation, not analytic, results, we

will use the more realistic model of queue behaviour.

Server

Pump / CCP

. . .

n

Source

Figure 9: Simulation model.

The Pump and the SAFP use the same simulation model except moving average. When

the SAFP is simulated, the moving average is always set to zero. One the other hand, when

the Pump is simulated, the moving average is computed depending on the server's ACK time.

We assume that all messages have the same length, the timeout, � , is 250.0 ms, the overheads,

Ov, of store and forward bu�er and the CB bu�er to process a message are both 0.3 ms, and a

small number, �, is 0.001 ms in our experiments. We ignore all factors that are common in both

the SAFP and the Pump, and try to isolate the e�ect of random ACK time to throughput.

We perform three classes of experiments as follows. The source attempts to generate

messages whose interarrival mean time is 1.0 ms (the action of the Pump and Low's internal

23

�nite bu�er size of course moderate this generation). The server processes messages according

to a 2-Erlang distribution with mean service time 0.5 ms, 1ms, or 2ms, depending on the

experiment. These experiments correspond to Low being slower, the same, or faster, than

High, respectively. Each class of experiment is broken down into three subclasses of di�erent

bu�er and moving average sizes.

5.2 Simulation Results

All simulations have been run ten times with di�erent random numbers. The following results

are the average of those runs and show three aspects: (1) throughput, (2) the average length

of the queue in the Pump and the SAFP, and (3) the probability of the bu�er to be full (CBf).

Service Time = 0.5 ms, High faster

Table 1. n = 10, m = 10

Throughput Queue

(messages/sec) Mean Length CBf (%)

SAFP 1001 1.8 0.0

Pump 1002 1.6 0.0

Table 2. n = 100, m = 100

Throughput Queue

(messages/sec) Mean Length CBf (%)

SAFP 1001 1.8 0.0

Pump 1001 1.6 0.0

Table 3. n = 1000, m = 1000

Throughput Queue

(messages/sec) Mean Length CBf (%)

SAFP 1001 1.8 0.0

Pump 1003 1.6 0.0

24

Service Time = 1.0 ms, High same as Low

Table 4. n = 10, m = 10

Throughput Queue

(messages/sec) Mean Length CBf (%)

SAFP 992 9.7 81.6

Pump 960 7.6 20.6

Table 5. n = 100, m = 100

Throughput Queue

(messages/sec) Mean Length CBf (%)

SAFP 992 75.5 49.3

Pump 989 32.1 0.0

Table 6. n = 1000, m = 1000

Throughput Queue

(messages/sec) Mean Length CBf (%)

SAFP 993 149.1 0.0

Pump 990 46.0 0.0

Service Time = 2.0 ms, High slower

Table 7. n = 10, m = 10

Throughput Queue

(messages/sec) Mean Length CBf (%)

SAFP 500 10.0 96.2

Pump 475 7.6 24.5

Table 8. n = 100, m = 100

Throughput Queue

(messages/sec) Mean Length CBf (%)

SAFP 500 99.9 95.8

Pump 496 48.9 0.0

Table 9. n = 1000, m = 1000

Throughput Queue

(messages/sec) Mean Length CBf (%)

SAFP 500 987.0 91.2

Pump 494 82.1 0.0

The simulation results show that (1) there is little performance penalty due to randomized

ACKs from the Pump and (2) the Pump substantially lower the CBf (%) (that in turn lowers

the covert channel capacity). Therefore we see that the Pump does not hurt performance, but

does prevent the CB from becoming/staying full.

25

6 Summary

A Pump that balances the communication requirements of reliability and security is intro-

duced. The Pump provides ACKs to a source for reliability. These ACKs are also used to

regulate the input rate from a source by attempting to slave the input rate to the inverse of

the moving average of the service time through the randomized ACK rate to the source.

Despite the Pump's randomized ACKs, there still exists a covert channel. We analyzed

the capacity of this covert channel as a function of bu�er size and moving average size. The

purpose of the covert channel analysis is to provide guidelines for the designer of the Pump

to choose appropriate design parameters (e.g., size of bu�er and moving average) depending

on the analysis presented in this paper and system requirements.

To back up our performance claim in this paper, we presented simulation results.

7 Acknowledgements

We would like to thank Ruth Heilizer, Carl Landwehr, and Ravi Sandhu for their helpful

comments.

References

[1] D. Denning. \The lattice model of secure information
ow," Communications of the

ACM, Vol. 19, No. 5, 1976.

[2] R.S. Sandhu. \Lattice-based access control models," Computer (IEEE), Vol. 26, No. 11,

pp. 9-19, Nov. 1993.

[3] D. Bell and L. LaPadula. \Secure computer systems: Mathematical Foundation," ESD-

TR-73-278, Vol.1, Mitre Corp, 1973.

[4] M.H. Kang, Ira S. Moskowitz and D. Lee.\A network version of the Pump," Proc. of the

IEEE Symposium on Research in Security and Privacy, Oakland, CA, May 1995.

[5] M. Schwartz. Computer Communication Network Design and Analysis. Prentice Hall,

1977.

[6] J. McDermott. \The b2/c3 problem: how big bu�ers overcome covert channel cynicism in

trusted database systems," Proc. of the IFIP WG 11.3 eighth annual working conference

on database security, Germany, August 1994.

[7] Ira S. Moskowitz and A.R. Miller. \The channel capacity of a certain noisy timing chan-

nel," IEEE Transactions on Information Theory, Vol. 38, No. 4, pp. 1339-1344, July

1992.

[8] C. Shannon and W. Weaver. The mathematical theory of communication. University of

Illinois Press, 1949. Also appeared as a series of papers by Shannon in the Bell System

26

Technical Journal, July 1948, October 1948 (A Mathematical Theory of Communication),

January 1949 (Communication in the Presence of Noise).

[9] Ira S. Moskowitz and M. H. Kang. \Covert channels | Here to stay?," Proceedings of

COMPASS '94, pp. 235 - 243, Gaithersburgs, MD, 1994.

[10] B. Lampson. \A note on the con�nement problem," Communications of the ACM, Vol.

16, No. 10, 1973.

[11] National Computer Security Center. DoD Trusted Computer Security Evaluation Criteria

(Orange Book). DoD 5200.28-STD, 1985.

[12] O. Costich and Ira S. Moskowitz. \Analysis of a storage channel in the two-phase commit

protocol," Proc. of the Computer Security Foundations Workshop 4, Franconia, NH,

1991.

[13] J. W. Gray III. \On introducing noise into the bus-contention channel," Proc. of the

IEEE Symposium on Research in Security and Privacy, Oakland, CA, 1993.

[14] W.M. Hu. \Reducing timing channels with fuzzy time," Proc. of the IEEE Symposium

on Research in Security and Privacy, Oakland, CA, 1991.

[15] A.R. Miller and Ira S. Moskowitz. \Reductions of a class of Fox-Wright Psi functions for

certain rational parameters," Computers & Mathematics with Applications, to appear.

[16] Ira S. Moskowitz and A.R. Miller. \Simple Timing Channels," Proc. of the IEEE Sym-

posium on Research in Security and Privacy, Oakland, CA, 1994.

[17] Ira. S. Moskowitz and M. H. Kang. \Discussion of a statistical channel," Proceedings of

IEEE-IMS Workshop on Information Theory and Statistics, p. 95, Alexandria, VA, 1994.

[18] A.M. Law and W.D. Kelton. Simulation Modeling and Analysis. McGraw Hill, (1982)

1991.

